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1. INTRODUCTION

Dynamic analysis, including free vibration and stability, of distributed structures such as
beams, plates, shells, frames and other multibody structures composed of the former ones,
can be carried out through the classical Rayleigh}Ritz method and its generalization for
composite systems, the substructure synthesis method [1, 2]. In the analyses, admissible
functions such as Euler}Bernoulli beam eigenfunctions have the advantage, compared to
other functions, of being dynamically related to the foregoing structures, which implies
excellent convergence characteristics of the methodologies [3, 2], and of being orthogonal.
In fact, they were applied successfully in analyzing those structures throughout the last
century [4}9]. Nevertheless, the application of beam eigenfunctions has not been wide
because they have the drawback of being troublesome to work with, as they are complicated
and involve hyperbolic functions. In avoiding beam functions, some researchers utilized
trigonometric functions [10], non-orthogonal polynomials [11] and orthogonal
polynomials [12], while others developed the "nite element method which, as far as
dynamics is concerned, represents a Rayleigh}Ritz method [13]. The "nite element method
is not the most indicated one for beams, plates, shells and multibody structures with simple
geometry; indeed, the superior convergence characteristics of basic Rayleigh}Ritz
methodologies based on beam characteristic functions have been shown in these cases
[3, 2, 9].
Therefore, if convergence, more importantly, if speed of convergence is critical in

analyzing these structures, the Rayleigh}Ritz method and the substructure synthesis
method should be preferred; as a consequence, integrals involving beam eigenfunctions and
derivatives must be carried out. Moreover, because any of the Rayleigh}Ritz approaches is
a numerical method itself, there is the strongest interest in reducing the number of computer
operations in the algorithms, needless to say, in avoiding secondary numerical routines as
numerical integration. Reducing the number of computer operations is especially important
because badly behaved hyperbolic functions are involved. Hence, the solution of the
integrals must be simple.
In 1950, in a sometimes forgotten and not well-disseminated work, R. P. Felgar presented

a table with that type of integrals. The results were reprinted by Blevins [14] and are neat
and amazing; in other words, the simplicity and order of their structure is so marvellous that
they represent an example of the close relationship among mathematics, physics and
beauty. Incidentally, it seems that Sharma [15] was not aware of this preceding work while
developing a paper on this subject. In contrast, in another work Leung [16] extended the
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original by Felgar; indeed, some erroneous results were corrected. However, integrals in
their simplest form were not attained as in Felgar's work; actually, the objective of Leung's
investigation was to generalize Felgar's results and to develop a computational algorithm
for obtaining the de"nite integrals.
We present additional integrals in their simplest form. Most of them involve

pinned}clamped and clamped}pinned beam eigenfunctions. In addition, some integrals that
appeared in reference [14] that can be written in an even simpler form are also presented.
All the integrals arise in vibrational and buckling analysis of frames [9]. It is emphasized
that simpler results improve the accuracy of Rayleigh}Ritz-based approximate methods for
dynamic analysis of continuous systems.

2. DEFINITIONS AND RESULTS

The vibrational eigenfunctions satisfy the ordinary di!erential equation
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wherein the independent variable is the spatial variable x and beta is given by
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wherem is the mass per unit length,� is the natural frequency and EI is the #exural rigidity.
The characteristic functions for clamped}free, clamped}clamped, clamped}pinned and
pinned}clamped beams are, respectively, given by
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where ¸ is the beam length. Five points for noting are the simple form for >
��
that has been

obtained, that a normalized spatial variable has not been considered as in reference [16],
the several forms for �

�
, the introduction of �

�
and �

�
and the fact that the usual

normalizing constant has not been considered in equations (3) for simplicity. Finally, in the
table of integrals that follows, the indices r and s indicate the mode and the primes indicate
derivatives.

2.1. INTEGRALS
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3. REMARKS ON THESE AND PREVIOUS RESULTS

Apart from assuring neatness in mechanics, the practical implication of this work and the
original work by Felgar is that simple and computer-friendly expressions for the
characteristic integrals have been attained. The results are important because complex
approximate methods such as the ones based on the Rayleigh}Ritz theory, including the
"nite element method, ask for easy system matrices construction and for curtailing the
number of both computer operations and subordinate numerical methods in order to
protect accuracy. In other words, the interest is in that the convergence of the approximate
technique be controlled only by its inherent numerical characteristics and not by round-o!
errors associated with operations involving hyperbolic functions, for example, or secondary
approximate methods such as numerical integration. Leung's important contribution [16],
although broader in scope, does not ensure that the Rayleigh}Ritz procedures based on the
algorithms presented therein are numerically optimal in the sense explained before.

4. CONCLUSIONS

Further simplest-expression integrals that contain eigenfunctions of Euler}Bernoulli
beam boundary-value problems have been obtained; the expressions are written in terms of
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beam length and a few characteristic constants (¸, �
�
and �

�
). This type of integrals appears

in optimal structural applications of Rayleigh}Ritz methodologies. These results
supplement the work by Felgar, which proves powerful for simplifying those methodologies
and improving their convergence characteristics.

ACKNOWLEDGMENTS

The "nancial support of CONICIT under grant S1-2000000499 was truly valuable and
in#uential for the realization of this work.

REFERENCES

1. L. MEIROVITCH andM. K. KWAK 1991 American Institute of Aeronautics and Astronautics Journal
29, 1709}1719. Rayleigh}Ritz based substructure synthesis for #exible multibody systems.

2. C. A. MORALES 2000 Journal of <ibration and Acoustics 122, 2}6. Rayleigh}Ritz based
substructure synthesis for multiply supported structures.

3. L. MEIROVITCH andM. K. KWAK 1990 American Institute of Aeronautics and Astronautics Journal
28, 1509}1516. Convergence of the classical Rayleigh}Ritz method and the "nite element method.

4. J. L. MAULBETSCH 1937 Journal of Applied Mechanics 4, 59}62. Buckling of compressed
rectangular plates with built-in edges.

5. D. YOUNG 1950 Journal of Applied Mechanics 17, 448}453. Vibration of rectangular plates by
Ritz method.

6. G. B. WARBURTON 1965 Journal of the Mechanical Engineering Sciences 7, 399}407. Vibration of
thin cylindrical shells.

7. D. M. EGLE and J. L. SEWALL 1968 American Institute of Aeronautics and Astronautics Journal 6,
518}526. An analysis of free vibration of orthogonally sti!ened cylindrical shells with sti!eners
treated as discrete elements.

8. C. B. SHARMA 1974 Journal of Sound and<ibration 35, 55}76. Calculation of natural frequencies of
"xed}free circular cylindrical shells.

9. C. A. MORALES 2000 Engineering Structures 22, 1632}1640. Dynamic analysis of frames by
a Rayleigh}Ritz based substructure synthesis method.

10. G. B. CHAI 1994 Composite Structures 29, 249}258. Free vibration of generally laminated
composite plates with various edge support conditions.

11. Y. NARITA and A. W. LEISSA 1992 Journal of Sound and <ibration 154, 161}172. Frequencies and
mode shapes of cantilevered laminated composite plates.

12. R. B. BATH 1985 Journal of Sound and <ibration 102, 493}499. Natural frequencies of rectangular
plates using characteristic orthogonal polynomials in Rayleigh}Ritz method.

13. L. MEIROVITCH 1997Principles and¹echniques of<ibrations. EnglewoodCli!s, NJ: Prentice-Hall.
14. R. D. BLEVINS 1979 Formulas for Natural Frequency and Mode Shape. California: Van Nostrand

Reinhold.
15. C. B. SHARMA 1978 Journal of Sound and<ibration 56, 475}480. Calculation of integrals involving

characteristic beam functions.
16. A. Y. T. LEUNG 1988 Computers and Structures 29, 1087}1094. Integration of beam functions.


	1. INTRODUCTION
	2. DEFINITIONS AND RESULTS
	3. REMARKS ON THESE AND PREVIOUS RESULTS
	4. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

